Lindley’s paradox

Consider the result x of some experiment, with two possible explanations, hypotheses H_0 and H_1, and some prior π representing uncertainty as to which hypothesis is more accurate before taking into account x. Lindley’s paradox occurs when

1. The result is ”significant” by a frequentist test of H_0, indicating sufficient evidence to reject H_0, say, at the 5% level, and,

2. the posterior probability of H_0 given x is high, indicating strong evidence that H_0 is in better agreement with x than H_1.

These results can occur at the same time when H_0 is very specific, H_1 more diffuse, and the prior distribution does not strongly favor one or the other, as seen below.
An example

Suppose we flipped a coin and obtained 49,581 heads and 48,870. We assume that the number of heads is a binomial variable with parameter θ. We are interested in testing whether θ is 0.5 or some other value. That is, our null hypothesis is $H_0 : \theta = 0.5$ and the alternative is $H_1 : \theta \neq 0.5$.
An example

> binom.test(49581, 49581 + 48870)

 Exact binomial test

data: 49581 and 49581 + 48870
number of successes = 49581, number of trials = 98451, p-value = 0.02365
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.5004826 0.5067390
sample estimates:
 probability of success
 0.5036109
An example

We have no reason to favor one hypothesis over the other: \(\text{prob}(H_0|I) = \text{prob}(H_1|I) = 0.5 \). The posterior for \(H_0 : \theta = 0.5 \) is

\[
\text{prob}(H_0|k, I) = \frac{\text{prob}(k|H_0, I) \times \text{prob}(H_0|I)}{\text{prob}(k|H_0, I) \times \text{prob}(H_0|I) + \text{prob}(k|H_1, I) \times \text{prob}(H_1|I)}
\]

The likelihood functions can be calculated by

\[
\text{prob}(k|H_0, I) = \binom{n}{k}(0.5)^k(1 - 0.5)^{n-k} \approx 1.95 \times 10^{-4}
\]

\[
\text{prob}(k|H_1, I) = \int_0^1 \binom{n}{k} u^k(1 - u)^{n-k} du
\]

\[
= \binom{n}{k} \text{B}(k + 1, n - k + 1) \approx 1.02 \times 10^{-5},
\]

i.e. \(\text{prob}(H_0|k, I) \approx 0.95 \)
The lighthouse problem

A lighthouse is somewhere off a piece of straight coastline at a position α along the shore and a distance β out at sea. It emits a series of short highly collimated flashed at random intervals and hence at random azimuths. These pulses are intercepted on the coast by photo-detectors that record the fact that a flash has occurred, but not the angle from which it came. N flashes have so far been recorded at positions $\{x_k\}$. Where is the lighthouse?
The lighthouse problem

Fig. 2.7 A schematic illustration of the geometry of the lighthouse problem.
The lighthouse problem

Prior information I

- Random azimuths θ

$$\text{prob}(\theta_k|\alpha, \beta, I) = \begin{cases} \frac{1}{\pi} & \text{if } -\frac{\pi}{2} \leq \theta_k \leq +\frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$

- BUT: we do not know the azimuth θ, all we know is x_k, the position along the coast line
The lighthouse problem

Fig. 2.7 A schematic illustration of the geometry of the lighthouse problem.
The lighthouse problem

Prior information I

- Random azimuths θ

\[
\text{prob}(\theta_k | \alpha, \beta, I) = \begin{cases}
\frac{1}{\pi} & \text{if } -\frac{\pi}{2} \leq \theta_k \leq +\frac{\pi}{2} \\
0 & \text{otherwise}
\end{cases}
\]

- BUT: we do not know the azimuth θ, all we know is x_k, the position along the coast line

\[
\beta \tan \theta_k = x_k - \alpha
\]
Changing variables

Given that $Y = f(X)$, how is the pdf $\text{prob}(X|I)$ related to $\text{prob}(Y|I)$?
Changing variables

Given that $Y = f(X)$, how is the pdf $\text{prob}(X|I)$ related to $\text{prob}(Y|I)$?

Fig. 3.13 Changing variables in one dimension: the function f maps the point X^* to $Y^* = f(X^*)$ and the small interval δX to the corresponding region δY.
Changing variables

Given that \(Y = f(X) \), how is the pdf \(\text{prob}(X|I) \) related to \(\text{prob}(Y|I) \)?

\[
\text{prob}(X = X^*|I) \delta X = \text{prob}(Y = Y^*|I) \delta Y
\]

\[\text{prob}(X|I)\]

\[\text{prob}(Y|I)\]

Fig. 3.13 Changing variables in one dimension: the function \(f \) maps the point \(X^* \) to \(Y^* = f(X^*) \) and the small interval \(\delta X \) to the corresponding region \(\delta Y \).
Changing variables

Given that $Y = f(X)$, how is the pdf $\text{prob}(X|I)$ related to $\text{prob}(Y|I)$?

$$\text{prob}(X|I) = \text{prob}(Y|I) \left| \frac{dY}{dX} \right|$$
Changing variables

The lighthouse problem

\[
\text{prob}(\theta|\alpha, \beta, I) = \begin{cases}
\frac{1}{\pi} & \text{if } -\frac{\pi}{2} \leq \theta \leq +\frac{\pi}{2} \\
0 & \text{otherwise}
\end{cases}
\]

and

\[\beta \tan \theta = x - \alpha\]
Changing variables

Lets differentiate $\beta \tan \theta = x - \alpha$ on both sides with respect to x:

$$\beta(1 + \tan^2 \theta) \frac{d\theta}{dx} = 1$$

i.e. with $\tan \theta = \frac{x - \alpha}{\beta}$

$$\frac{d\theta}{dx} = \frac{\beta}{\beta^2 + (x - \alpha)^2}$$
Changing variables

Thus, we arrive at

\[
\text{prob}(x|\alpha, \beta, I) = \text{prob}(\theta|\alpha, \beta, I) \left| \frac{d\theta}{dx} \right|
\]

\[
= \frac{\beta}{\pi \left[\beta^2 + (x - \alpha)^2 \right]}
\]
Fig. 2.8 The Cauchy, or Lorentzian, distribution. It is symmetric with respect to the maximum, at \(x = \alpha \), and has a FWHM of twice \(\beta \).
The lighthouse problem

A lighthouse is somewhere off a piece of straight coastline at a position α along the shore and a distance β out at sea. It emits a series of short highly collimated flashed at random intervals and hence at random azimuths. These pulses are intercepted on the coast by photo-detectors that record the fact that a flash has occurred, but not the angle from which it came. N flashes have so far been recorded at positions $\{x_k\}$. Where is the lighthouse?
The lighthouse problem

\[\text{prob}(\alpha, \beta|\{x_k\}, \beta, I) \propto \text{prob}(\{x_k\}|\alpha, \beta, I) \times \text{prob}(\alpha|\beta, I) \times \text{prob}(\beta|I) \]
The lighthouse problem

\[
\text{prob}(\alpha|\beta, I) = \begin{cases} A & \alpha_{\text{min}} \leq \alpha \leq \alpha_{\text{max}} \\ 0 & \text{otherwise} \end{cases}
\]

\[
\text{prob}(\beta|I) = \begin{cases} B & 0 < \beta \leq \beta_{\text{max}} \\ 0 & \text{otherwise} \end{cases}
\]

\[
\text{prob}\{x_k\}|\alpha, \beta, I) = \prod_{k=1}^{N} \text{prob}(x_k|\alpha, \beta, I)
\]
The lighthouse problem

\[L = \ln [\text{prob}(\alpha, \beta|\{x_k\}, I)] = \text{constant} + \sum_{k=1}^{N} \{\ln(\beta) - \ln [\beta^2 + (x_k - \alpha)^2]\} \]
The lighthouse problem

\[L = \ln \left[\text{prob}(\alpha, \beta | \{x_k\}, I) \right] \]

\[= \text{constant} + \sum_{k=1}^{N} \left\{ \ln(\beta) - \ln \left[\beta^2 + (x_k - \alpha)^2 \right] \right\} \]

Case 1: \(\beta \) known, \(\beta = 1 \text{km} \)

\[L = \ln \left[\text{prob}(\alpha, \beta = 1 | \{x_k\}, I) \right] \]

\[= \text{constant} - \sum_{k=1}^{N} \ln \left[\beta^2 + (x_k - \alpha)^2 \right] \]
N = 1

\[\text{prob}(\alpha|\beta, I) \]

N = 2

\[\text{prob}(\alpha|\beta, I) \]

N = 3

\[\text{prob}(\alpha|\beta, I) \]

N = 8

\[\text{prob}(\alpha|\beta, I) \]

N = 64

\[\text{prob}(\alpha|\beta, I) \]

N = 1024

\[\text{prob}(\alpha|\beta, I) \]
The lighthouse problem

\[L = \ln \left[\text{prob}(\alpha, \beta|\{x_k\}, I) \right] \]

\[= \text{constant} + \sum_{k=1}^{N} \left\{ \ln(\beta) - \ln \left[\beta^2 + (x_k - \alpha)^2 \right] \right\} \]

Case 2: both \(\alpha \) and \(\beta \) unknown
The central limit theorem

Suppose \(\{X_1, X_2, \ldots \} \) is a sequence of i.i.d random variables with \(E[X_i] = \mu \) and \(Var[X_i] = \sigma^2 < \infty \). Then as \(n \) approaches infinity, the random variables \(\sqrt{n}(S_n - \mu) \) converge in distribution to a normal \(N(0, \sigma^2) \), with \(S_n = \frac{X_1 + \cdots + X_n}{n} \).
The central limit theorem
\[\text{prob}(\alpha_{xk} | \beta, I) \]

N = 1

![Graph for N = 1](image)

N = 2

![Graph for N = 2](image)

N = 3

![Graph for N = 3](image)

N = 8

![Graph for N = 8](image)

N = 64

![Graph for N = 64](image)

N = 1024

![Graph for N = 1024](image)
The central limit theorem

Suppose \(\{X_1, X_2, \ldots \} \) is a sequence of i.i.d random variables with \(E[X_i] = \mu \) and \(Var[X_i] = \sigma^2 < \infty \). Then as \(n \) approaches infinity, the random variables \(\sqrt{n}(S_n - \mu) \) converge in distribution to a normal \(N(0, \sigma^2) \), with \(S_n = \frac{X_1 + \cdots + X_n}{n} \).
For a Cauchy distribution σ^2 is infinite and μ is not defined!